For $n=1$, we have the trivial statement that $P(A_1)=P(A_1)$.Now let's assume that the statement whenever $n < N$. In particular, it is true when n = N-1, i.e.:
$$P(A_1,A_2,...,A_{N-1})=P(A_1)P(A_2|A_1)...P(A_{N-1}|A_1\cap A_2\cap ... \cap A_{N-2})$$
To show the statement holds for $n=N$, let's define an event B, where:
$B=A_1\cap A_2 \cap ... \cap A_{N-1}$
$$ P(A_1,A_2,...,A_{N-1},A_n)=P(B \cap A_N)$$
From Bayes rule we have:
$$P(B \cap A_N)=P(B)P(A_N|B)$$
Substituting $A_1\cap A_2 \cap ... \cap A_{N-1}$ for B,
$$ P(A_1\cap A_2 \cap ... \cap A_{N-1} \cap A_N)=P(A_1\cap A_2 \cap ... \cap A_{N-1})P(A_N|A_1\cap A_2 \cap ... \cap A_{N-1}) $$
Substituting the first equation above, we have the final result,$$\begin{align*}P(A_1\cap A_2 \cap ... \cap A_{N-1} \cap A_N)= \\P(A_1)P(A_2|A_1)...P(A_{N-1}|A_1\cap A_2\cap ... \cap A_{N-2})P(A_N|A_1\cap A_2 \cap ... \cap A_{N-1})\end{align*}$$