Edit Problem


G discrete joint marginal and continuous distributions
|
Easy


Compute (a) $P(X=1|Y=1)$ and (b) $P(X = 2|Y=2)$ for the following joint distribution:

$Y$ $X=1$ 2 3
$1$ $0.1$ $0.2$ $0.3$
$2$ $0.15$ $0.15$ $0$
$3$ $0.05$ $0$ $0.05$
Answer:

$\frac{1}{6};\frac{5}{10}$

Solution:

We first compute the marginal PMF $f_Y(y)$ of $Y$ from the given joint PMF $f_{XY}(x,y)$. The marginal PMF is given by the row sums of the given table.

$Y$$X=1$23$f_Y(y)$
$1$$0.1$$0.2$$0.3$$0.6$
$2$$0.15$$0.15$$0$$0.3$
$3$$0.05$$0$$0.05$$0.1$

(a) Now, using the the values from the table we get,\[P(X=1|Y=1)=\frac{f_{XY}(1,1)}{f_Y(1)}=\frac{0.1}{0.6}=\frac{1}{6}.\]

(b) Now, using the the values from the table we get,\[P(X=2|Y=2)=\frac{f_{XY}(2,2)}{f_Y(2)}=\frac{0.15}{0.3}=\frac{5}{10}.\]