b. By independence, we have,
$$P(\{T>t\} \cap \{U>t\} \cap \{V>t\} ) = P(\{T>t\}) P( \{U>t\} ) P( \{V>t\} )$$
For the first multiplicand,
$$ P( \{T>t\} ) = \int_t^\infty f_T(u) du = \int_t^\infty \frac{1}{3}e^{-\frac{1}{3}u} = -e^{-\frac{1}{3}u} |_t^\infty = e^{-\frac{1}{3}t} $$
By similar argument,
$$ P( \{U>t\} ) = e^{-\frac{1}{2}t}, \qquad P( \{V>t\} ) = e^{-\frac{1}{6}t}$$
Therefore,
$$P(\{T>t\} \cap \{U>t\} \cap \{V>t\} ) = e^{-\frac{1}{3}t} e^{-\frac{1}{2}t} e^{-\frac{1}{6}t} = e^{-t} $$
c. Let $F_O$ be the cdf of $O$ and let $f_O$ be the pdf. For $t \ge 0$, we can write,
$$F_O(t) = P(O \le t) = P( min(T,U,V) \le t) = 1 - P( min(T,U,V) > t)$$
Where the last equality follows from the complement rule.
Finally, we note that the minimum of three numbers is bigger than $t$ whenever all three numbers are bigger than $t$, $\{ min(T,U,V) > t\} = \{T>t\} \cap \{U>t\} \cap \{V>t\}$. We can write,
$$F_O(t) = 1 - P( \{T>t\} \cap \{U>t\} \cap \{V>t\} ) = 1 - e^{-t} $$
To find the density, we take the derivative,
$$f(t) = \frac{d}{dt}F(t) = \frac{d}{dt} 1 - e^{-t} = e^{-t}$$