$E[\epsilon]=E[Y-\beta_0 - \beta_1 X]=E[Y]-\beta_0 -\beta_1 E[X]$Given the PMF, we find the P(X=1)=0.5, P(X=-1)=0.5, P(Y=1)=0.5, P(Y=-1)=0.5Using these probablities, we can calculate the expectations for X and Y as follows:E[Y]=0.5 $\times$ 1+(-1)$\times$ 0.5 = 0E[X]=0.5 $\times$ 1+(-1)$\times$ 0.5 = 0Therefore, E[$\epsilon$]=0-$\beta_0$-$\beta_1 \times$ 0=$-\beta_0$For $E[X \epsilon]$=0, $\beta_0$=0
$E[X \epsilon]=E[X(Y-\beta_1 X)]=E[XY-\beta_1 X^2]=E[XY]-\beta_1 E[X^2]$To find $E[X^2]$, we use the probabilities we found in (1) and LOTUS:$E[X^2]$=1 $\times$ 0.5+ $(-1)^2 \times$ 0.5=1To find E[XY], we have:1 $\times$ 1 $\times$ 0.25+1 $\times$ (-1) $\times$ 0.25+(-1) $\times$ 1 $\times$ 0.25+(-1) $\times$ (-1) $\times$ 0.25=0
So $E[X \epsilon]= 0 \times \beta_1 \times 1 = - \beta_1$
To get $E[X \epsilon]=0$, we need $\beta_1$=0
The BLP is 0 $\times$ X+ 0=0, the horizontal line through the origin.