- To compute the conditional expectation functions, we need to find the conditional probability density functions (PDFs) first. Once we have those, we can calculate the conditional expectations.
The conditional PDF of Y given X is given by:$$f_{Y∣X}(y∣x)=\frac{f(x,y)}{f_X(x)}$$
Let's compute $f_X(x)$ first:
For $0 \leq x \leq 0.5$:
$$f_X(x) = \int_{1}^{2} 0.5 dy = 0.5$$
For $0.5 \leq x \leq 1$:
$$f_X(x) = \int_{0}^{2} 0.5 dy = 1$$
For $1 \leq x \leq 1.5$:
$$f_X(x) = \int_{0}^{1} 0.5 dy = 0.5$$
So the $f_X(x)$ is given by:
$$f_X(x) = \begin{cases} 0.5, & 0 \leq x \leq 0.5 \\
1, & 0.5 \leq x \leq 1 \\
0.5, & 1 \leq x \leq 1.5\end{cases}$$
And the $f_{Y∣X}(y∣x)$ is given by:
$$f_{Y∣X}(y∣x) = \begin{cases} 1, & 0 \leq x \leq 0.5 \\
0.5, & 0.5 \leq x \leq 1 \\
1, & 1 \leq x \leq 1.5\end{cases}$$
Now, let's compute the conditional expectation of Y given X:
For $0 \leq x \leq 0.5$:
$$E(Y|X) = \int_{1}^{2} y dy = 1.5$$
For $0.5 \leq x \leq 1$:
$$E(Y|X) = \int_{0}^{2} 0.5y dy = 1$$
For $1 \leq x \leq 1.5$ is:
$$E(Y|X) = \int_{0}^{1} y dy = 0.5$$
So the $E(Y|X)$ is given by:
$$E(Y|X) = \begin{cases} 1.5, & 0 \leq x \leq 0.5 \\
1, & 0.5 \leq x \leq 1 \\
0.5, & 1 \leq x \leq 1.5\end{cases}$$
- Compute the conditional expectation function of X given Y:
The conditional PDF of X given Y is given by:$$f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)}$$
Let's compute $f_Y(y)$ first:
For $0 \leq y \leq 1$:
$$f_Y(y) = \int_{0.5}^{1.5} 0.5 dx = 0.5$$
For $1 \leq y \leq 2$:
$$f_Y(y) = \int_{0}^{1} 0.5 dx = 0.5$$
So the $f_Y(y)$ is given by:
$$f_Y(y) = \begin{cases} 0.5, & 0 \leq y \leq 1 \\
0.5, & 1 \leq y \leq 2\end{cases}$$
And the $f_{X|Y}(x|y)$ is given by:
$$f_{X|Y}(x|y) = \begin{cases} 1, & 0 \leq y \leq 1\\
1, & 1 \leq y \leq 2\end{cases}$$
Now, let's compute the conditional expectation of X given Y:
For $0 \leq y \leq 1$:
$$E(X|Y) = \int_{0.5}^{1.5} x dx = 1$$
For $1 \leq y \leq 2$ is:
$$E(X|Y) = \int_{0}^{1} x dx = 0.5$$
So the $E(X|Y)$ is given by:
$$E(X|Y) = \begin{cases} 1, & 0 \leq y \leq 1 \\
0.5, & 1 \leq y \leq 2\end{cases}$$