Let X and Y be random variables with a joint pdf given by
$$f(x,y) =\begin{cases}\frac{1}{x}, & \text{for } 0 < y < x \text{, } 0 < x < 1 \0, & \text{otherwise}\end{cases}$$
1. f(X)
$$f(x) = \int_{0}^{x} \frac{1}{x} dy = \left. \frac{y}{x} \right|_{0}^{x} = 1$$
$$ \rightarrow f(x) =\begin{cases}1 & \text{for } 0 < x < 1 \0 & \text{otherwise}\end{cases}$$\break
2. Compute $V[Y|X]$
We know the following relationship: (see page 68)
$$V[Y|X] = E[Y^2\ X] - (E[Y\mid X])^2$$
- We first need to find $f(y|x)$
$$f(y | x) = \frac{f(x, y)}{f(x)} = \frac{\frac{1}{x}}{1} = \frac{1}{x}$$
$$ \rightarrow f(y|x) =\begin{cases}\frac{1}{x}, & \text{for } 0 < y < x\0, & \text{otherwise}\end{cases}$$
$$\begin{aligned}E[Y|X] &= \int_{0}^{x} y \frac{1}{x} dy\&= \frac{y^2}{2x}|_{0}^{x} \&= \frac{x}{2}\end{aligned}$$
and by LOTUS
$$\begin{aligned}E[Y^2|X] &= \int_{0}^{x} y^2 \frac{1}{x} dy \&= \frac{y^3}{3x}|_{0}^{x} \&= \frac{x^2}{3}\end{aligned}$$
Putting together the terms for $V[Y | X]$ we have
$$\frac{x^2}{3} - \frac{x^2}{4} = \frac{x^2}{12} \text{, for } 0< x <1$$
\break
3. $E[V[Y|X]]$
- From number 2, we know that $V[Y|X]=\frac{x^2}{12}$
Then
$$\begin{aligned}E[V(Y\mid X)] &= E[\frac{x^2}{12}] \&= \int_{0}^{1} \frac{x^2}{12} f(x)dx \&= \int_{0}^{1} \frac{x^2}{12} \cdot 1 dx \&=\left. \frac{x^2}{36} \right|_{0}^{1} \&= \frac{1}{36}\end{aligned}$$
\break
4. E[Y|X]
$$\begin{aligned}E[Y|X] &= \int_{0}^{x} y \frac{1}{x} dy \&= \frac{y^2}{2x} |_{0}^{x} \&=\frac{x^2}{2x}\&=\frac{x}{2}\\end{aligned}$$
\break
5. $V[E[Y|X]]$
Think of $E[Y|X]$ as another random variable such as Z
, then we can write$V[Z] = E[Z^2] - (E[Z])^2$ (see page 52) . Using this relationship, we can write following
$$V[E[Y \mid X]] = E[(E[Y \mid X])^2] - (E[E[Y \mid X]])^2 $$
from (4), we know $E[Y|X]=\frac{x}{2}$, so the above equation can be written as the following:
$$\begin{aligned}V[E[Y \mid X]] &= E[(E[Y \mid X])^2] - (E[E[Y \mid X]])^2 \&\phantom{}\&=E[(\frac{X}{2})^2]- (E[\frac{X}{2}])^2\&=E[(\frac{X^2}{4})]- (E[\frac{X}{2}])^2\\end{aligned}$$
Now let's evaluate $E[Y|X]=\frac{X^2}{4}$
$$\begin{aligned}E[\frac{X^2}{4}] &= \int_{0}^{1} \frac{x^2}{4} *1 \text{ } dx \&= \int_{0}^{1} \frac{x^2}{4} dx \&= \left. \frac{x^3}{12} \right|{0}^{1} \&= \frac{1}{12}\end{aligned}$$$$\begin{aligned}E[\frac{X^2}{4}] &= \int{0}^{1} \frac{x^2}{4} *1 \text{ } dx \&= \int_{0}^{1} \frac{x^2}{4} dx \&= \left. \frac{x^3}{12} \right|_{0}^{1} \&= \frac{1}{12}\end{aligned}$$
Now let's evaluate $E[Y|X]=\frac{X}{2}$$$\begin{aligned}E[\frac{X}{2}] &= \int_{0}^{1} \frac{x}{2} *1 \text{ } dx\&= \frac{x^2}{4} |_{0}^{1} \&= \frac{1}{4}\end{aligned}$$
Then,
$$\begin{aligned}V[E[Y \mid X]] &= E[(E[Y \mid X])^2] - (E[E[Y \mid X]])^2 \&\phantom{}\&=E[(\frac{X}{2})^2]- (E[\frac{X}{2}])^2\&\phantom{}\&=E[(\frac{X^2}{4})]- (E[\frac{X}{2}])^2\&\phantom{}\&= \frac{1}{12}-\frac{1}{16}\&\phantom{}\&= \frac{1}{48}\end{aligned}$$
\break
6. $V[Y]$ using the law of total variance
Recall that the law of total variance states that (see page 73)
$$V[Y]= E[V(Y\mid X)] + V(E[Y \mid X])$$From (3), we got $E[V[Y|X]]= \frac{1}{24}$ and from (5), we got $V[E[Y|X]]=\frac{1}{48}$
$$\begin{aligned}V[Y]&= E[V(Y\mid X)] + V(E[Y \mid X])\&=\frac{1}{36}+\frac{1}{48}\\end{aligned}$$